PERFORMANCE EVALUATION OF THE SOLVO MDQ-KIT

János Márki-Zay1, Katalin Jakab Tauber2, Sándor Baráth1, Edit Gyimesi2, Zsuzsanna Hevessy3, Valéria Sziráki Kiss1, Péter Szabó4, Tamás Magyarlaki4, Margit Tökés-Füzesi1, Éva Truczsa, Sándor Sipka3, János Kappelmayer3

1Solvo Biotechnology, Szeged; 2University of Debrecen-Medical and Health Science Center, 3rd Department of Internal Medicine and Regional Immunological Laboratory, 3Department of Clinical Biochemistry and Molecular Pathology, Debrecen; 4University of Pécs-Medical School, Department of Laboratory Medicine, Pécs; Hungary, 5University of Szeged-Albert Szent-Györgyi Clinical Center - Department of Laboratory Medicine, Szeged

BACKGROUND:
The multidrug resistance (MDR) usually results from the expression of ATP-binding cassette (ABC) transporters, such as the ABCB1 (MDR1 or P-gp), ABCCL (MRP1), and ABCG2 (BCRP) which are known to function as drug efflux pumps. MDR is believed to be a major barrier to successful chemotherapy in cancer patients; however, neither the genetic polymorphisms nor the mRNA/protein expression levels correlate closely with the functional activity and studies using the methods above have given conflicting and inconsistent results.

On the other hand, although the functional methods separately gave promising results, standardization and reproducibility of these tests failed to conform with values required from routine diagnostic methods. MultiDrugQuant (MDQ) kit was developed as an improved functional assay system, which can measure the MDR activity of the three, clinically most relevant efflux transporters, such as MDR1, MRP1 and BCRP in living tumor cells.

Dye efflux assays applied in the kit (Figure 1.) are based on determining fluorescence intensity differences using a flow cytometer after short in-vitro incubation of the cell suspension with a fluorescent dye such as the calcine-acetoxyethyl ester (calcine AM) for MDR1 and MRP1 with or without the addition of selective inhibitors of MDR1 and MRP1. The BCRP arm of the MDQ kit utilizes mitoxantrone as dye and Ko134 as BCRP-specific inhibitor.

RESULTS

STANDARDIZATION OF FLUORESCENCE-BASED METHOD
Compatible fluorescent-labelled antibodies enable the gating of cell populations of interest in the calcine- and mitoxantrone-assays. The MAF values were found feasible in controls (left plots) as well as in AML samples (right plots).

AIM:
Purpose of the present study was to carry out the laboratory validation and the multicenter performance evaluation of the MDQ-kit according to the requirements to be applied for routine diagnostic methods.

MATERIALS & METHODS:
- Validation of the SOLVO MDQ kit was carried out according to the standards EP10-A3 and EPS-A2 of the Clinical Laboratory Standards Institute (CLSI, former NCLLS) in three university clinical centers in Hungary.
- The reference intervals were determined according to the CLSI guideline C28-A2 on CD3+ lymphocytes of a reference population of 120 healthy volunteers (18 to 74 years) at 90% confidence.
- Mononuclear cells were separated from K3-EDTA tubes using Ficoll gradient and tested at 2–5 × 10^6/ml within 6 hours after specimen collection.
- The testing laboratories used different flow cytometers, such as BD FACScanrCalibur, (Becton-Dickinson), and Beckman-Coulter FC500 (Beckman-Coulter).
- The SOLVO MDQ kit was used strictly following the manufacturers instructions. The activity of the multidrug transporter (MAF) was calculated from the difference between the mean fluorescent intensity of cells w/o the specific inhibitors, respectively.

MAF total = 100 × (Fcalcine/FL1 - Fcalcine/FL1 with inhibitor) / Fcalcine/FL1 with inhibitor

MAF_{MRP1} = 100 × (Fmitoxantron/FL4 - Fmitoxantron/FL4 with inhibitor) / Fmitoxantron/FL4 with inhibitor

MAF_{BCRP} = 100 × (Fmitoxantron/FL4 - Fcalcine/FL1 with inhibitor) / Fcalcine/FL1 with inhibitor

In order to determine the accuracy and for comparative measurements between the laboratories, the MDQ assay was performed on control HL60 cells as well as on selected cell lines with high activity of one of the transporters: HL60/MDR1+, HL60/MPR1+ and PLB/BCRP+.

- Results on different flow cytometers were compared applying CD3 (clone: SK7) or CD19 (clone: 12.2) or CD45 (clone: 2D10) monoclonal antibodies (mAb) for gating the population of interest. All the antibodies were purchased from Becton-Dickinson.

- Robustness of the method was assessed using the test at different concentrations of the fluorescent dyes (10–100 % of the original) and inhibitors (50–150 % of the original) using a Partec CyFlow space flow cytometer (Partec GmbH, Münster, Germany).

The validation study was performed in accordance with the ethical standards laid down in the Declaration of Helsinki and has been approved by the national as well as institutional ethical committees.

REFERENCES
Reference intervals determined at 90% confidence level on CD3+ lymphocytes in a population of 120 healthy individuals (mean age=43.2 14.77 years) without any medication:

- MAF_{CD3} < 7.0
- MAF_{CD3} < 25.0
- MAF_{CD3} < 12.5
- MAF_{CD3} < 10.0

TESTING LEUKEMIC SAMPLES USING THE SOLVO MDQ-kit
Preliminary MDQ results measured on the CD45dim cells of 39 AML and on the CD19+ cells of 31 CLL patients.

Both in the AML and CLL groups, MDR transporter activities were often elevated significantly.

CONCLUSION
- The MDQ-kit provides quantitative results on the activity of the three clinically relevant multidrug resistance transporters, such as the MDR1, MRP1 and BCRP.
- Designed as an easy to use and robust, routine flow cytometric assay to predict therapy resistance in haematologic malignancies and autoimmune diseases.
- Both in the AML and CLL groups, MDR transporter activities were often elevated significantly.

Correspondence: Katalin Jakab M.D.;
Solvo Biotechnology, Közeg fasor 52, 6726 Szeged;
http://www.solvomdkit.com/

This work was supported by Hungarian Grant – National Technology Programme /2008: IV0MDQ08

Figure 1. Principle of dye efflux assays